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Quantum fluctuations of flexible chain molecules and rods and molecular nanotechnology
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The classical ground state of a flexible chain molecule (polymer) is well known to be simple, just a
straight line. Here we consider quantum fluctuations of flexible chains. In their presence, the straight
ground (zero-temperature) state becomes rough, whereas the Hookean, linear elastic theory breaks
down: For a weak tensile force applied to the chain ends, the increment of the chain length is
~(force)!”2. In non-self-avoiding chains, quantum fluctuations alone may induce a zero-temperature
phase transition from the straight to a crumpled ground state. Self-avoiding chains, however, appear to
have only straight ground states. We discuss these phenomena in physical systems of interest for molec-

ular nanotechnology.

PACS number(s): 05.40.+j, 05.30.—d, 36.20.—r

I. INTRODUCTION

In recent years, the study of thermal fluctuations of
membranes and surfaces has advanced considerably, not
only because of its technological importance [1], but also
because of its manifestation of interesting statistical phys-
ics on fundamental levels [2]. Much of the attention has
been devoted to fluid and crystalline membranes that are
two-dimensional (2D) generalizations of ordinary poly-
mers. In these systems, thermal fluctuations may pro-
duce a number of striking effects, such as strong entropic
intermembrane interactions [3], anomalous elasticity [4],
and crumpling transitions [5]. All these effects can be un-
derstood in the framework of the classical statistical
physics. Quantum fluctuations, however, ubiquitously
dominate low-temperature behavior of physical systems.
In ordinary crystalline solids, quantum phonon effects be-
come important below the Debye temperature T, which
is, in many practical instances, above the room tempera-
ture [6]. So the well known T specific heat law of crys-
tals is associated with a classical-to-quantum crossover:
well below T, phonon fluctuations are purely quantum
in nature in a broad range of length scales shorter than a
crossover scale, which diverges as T'—0. A similar
crossover exists in realistic membranes and polymers, and
their analogs, such as flexible thin shells and rods. This
has already been realized in newly emerging molecular
nanotechnology dealing with remarkable mechanical ele-
ments (rods, shells, springs, etc.) of extremely small sizes
[7]. We remark that quantum effects are also important,
or even dominant, in other systems involving fluctuating
manifolds, such as the Abrikosov flux-line lattices in
high-T, superconductors (‘“quantum melting” [8]). Man-
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ifolds analogous to membranes and flexible rods may ex-
ist in quark-nuclear matter, even at T =0, in the form of
periodic phases of stacked quark shells or rods imbedded
in a nuclear matter background [9]. These phases are
analogs of lamellar and columnar phases of fluid mem-
branes [1]. Whereas the lamellar fluid membrane phases
are stabilized by Helfrich’s entropic repulsion induced by
thermal fluctuations [3], analogous phases of quark mem-
branes or rods may be stabilized at 7 =0 by a similar in-
teraction induced by quantum fluctuations of the kind we
consider here.

This paper yields deep theoretical insight into quantum
fluctuations of flexible manifolds such as polymers and
membranes [2]. We consider the fundamental problem of
ground-state properties of a single long chain molecule
(flexible polymer) or a flexible rod of practical interest for
molecular nanotechnology [7]. The classical ground state
of these systems is well known to be simple—just a
straight line configuration. This is the unique
configuration minimizing chain bending energy. Here,
we show that quantum fluctuations substantially modify
this picture. The straight ground state is actually rough,
with transverse chain fluctuations growing as V'N for a
chain of N monomers. A striking effect of these quantum
fluctuations is a breakdown of the classical, Hookean
elastic behavior: One would classically expect that a
weak tensile force f applied to polymer ends stretches its
ground-state configuration by an amount simply propor-
tional to f, i.e., strain ~f. We find, however, that this
Hooke law, usually expected to hold in the limit f—0, is
replaced by an anomalous elastic response to a weak f of
the form

strain~V'f ,

which originates from the long length-scale quantum
fluctuations of long chains (Sec. III). So, the Hooke law
of the conventional mechanical engineering breaks down
in the quantum-mechanical engineering of nanosystems
[7]. This anomalous elastic behavior occurs for f << fg
where f; is a crossover (“Ginzburg”) force scale (see
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Secs. IIT and V). For f > f; one has ordinary Hookean
behavior with strain ~ f. For the common hydrocarbon
polyethylene chain (—CH,—),,, in Sec. V we find that
fe~1073nN. Thus, at least for hydrocarbon chains, the
forces required to observe the anomalous elastic response
are some three orders of magnitude smaller than the
forces required to manipulate atoms and build practical
nanosystems [7]. If these systems are to be used for per-
forming accurate measurements (e.g., as accelerometers),
then one must go to low temperatures, where the quan-
tum effects we consider are ubiquitously present. The
main objective of this technology is to suppress fluctua-
tions, not to hunt for fascinating fluctuations phenomena.
On this route, thermal fluctuations can be a serious prob-
lem. Once they are eliminated by going to sufficiently
low T, quantum fluctuations still remain and pose the ul-
timate limit to molecular nanotechnology. Our paper ex-
plores this ultimate limit.

We remark that a similar anomalous elastic response to
weak external forces is well known to occur in crystalline
membranes [4]. There, the anomalous elasticity is purely
classical phenomenon induced by thermal fluctuations.
On the other hand, here we show that anomalous elastic
behavior can be present even at T'=0, i.e., in the absence
of thermal fluctuations. The source of this ground-state
anomalous elasticity is quantum fluctuations ublquxtously
present even at T =0.

Another interesting purely quantum effect we find in
chains with bending rigidity constant « smaller than a
critical value x,~#>. For k<k,, a non-self-avoiding
(self-intersecting) chain has a crumpled ground state hav-
ing the appearance of a highly collapsed polymer
configuration (Sec. IV). Its radius of gyration grows very
slowly with N as R,~[log(N)]'/?>. Such a disordered
ground state is induced purely by quantum
fluctuations—the classical ground state is straight for
any «>0. However, repulsive interactions preventing
chain self-intersection may significantly affect the ex-
istence of the crumpled ground state. We find, from
quantum Monte Carlo simulations, that they are likely to
suppress the occurrence of the crumpled ground state
(Sec. IV). Similar suppression of crumpled phases was
found to occur in tethered membranes [10].

This paper is organized as follows. In Sec. II we dis-
cuss flexible chains and their quantum statistical physics.
Section III discusses quantum fluctuations around the
straight ground state and its anomalous elastic response
to weak tensile forces. Section IV deals with the crum-
pled ground state. In Sec. V we apply our results to po-
lyethylene chains. The Appendix describes an alternative
derivation of the results presented in Sec. III.

II. MODEL

We start by discussing models for non-self-avoiding
flexible chain molecules. For a chain of N +1 molecules
(monomers) with positions Ryg,R;,...,Ry in a d-
dimensional space (d =2,3,...), the chain potential en-
ergy is, generally, of the form

URgR, ..., Ry)=U  +Uppq - (1)
Here
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where V is a nearest-neighbor potential binding mono-
mers together. V typically has a deep minimum keeping
neighbors at some preferred distance I, (|R,;

—R,|=1y). Upyq in (1) is a bending energy of the form
KI%N—-Z )
Ubendz——- 2 (Ts+1_Ts) ’
2 s=0
with  T,=(R,;;—R,)/IR; 1 —R|=(R;;;—R)/l,,

and « a positive bending constant. For any positive k, the
molecular configuration minimizing (1) (classical ground
state) is a straight line of length L =NI;: R, =R,+1ls,
where 1 is an arbitrary unit vector. So, the ground state
is characterized by a nonzero orientational order parame-
ter (AR)/ (as)=lot A tensile force f applied to chain
ends along T contributes the term — fH(Ry —R,) to the
potential energy . A weak f stretches the ground state in
a Hookean manner; the strain is

/lo=f/Y,

where Y =4I3V""(12) is a Young modulus. In a continu-
um notation, (1) can be rewritten as

U= foNds

with V, for |3,R| =1, of the form

AL/L=A|9R

’R
ds?

2
J , ()

" 2
R |y YU R |,
3s Vg + 2 3s 1§
272
—const+ SR x| |9R 2"
3 4 as

This form is reminiscent of a Ginzburg-Landau model
with M=(0R)/(ds) as an orientational order parameter:
For r <0, the energy is minimized by a nonzero M of ar-
bitrary orientation [11].

To discuss quantum effects, we consider the full quan-
tum chain Hamiltonian

A=_s 2

+U(RyR,, ..., Ry)—fHRy—R,).

(3)
The first term in (3) is kinetic energy of monomers with
mass m. To study (3), we apply the quantum-statistical
(“imaginary time””) Feynman path integral method [12].
At a temperature 7, quantum chain partition function

has the form []; f DR (7)exp(— ), with
ﬁ/kB N m | OR, 2
__f :07 or
+U[Ry(7),R(7), ..., Ry(7)]
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Here, 7 is the imaginary time and R (7=0)
=R (r=%#/kgT) [12]. In the continuum notation

2
#i/kg T N m IR
L [ L ]
2
| R qoR6D
“ 1 as2 ds

(5)

Applying the path integral method, we mapped our quan-
tum problem into a two-dimensional classical statistical-
mechanics problem (5) for a d-component field R(s, ) liv-
ing in the region 0<7<#/kpT, 0<s <N. This region
extends to the entire (7,s) plane in the long-chain limit
(N— o) and in the ground state (7"—0). This feature
makes the quantum chain ground-state problem similar
to classical statistical physics of membranes [2]. Howev-
er, these two problems are still qualitatively different in
detail, as discussed in the following sections.

III. QUANTUM FLUCTUATIONS AROUND
THE STRAIGHT GROUND STATE

We first discuss quantum fluctuations around the clas-
sical, straight ground state by writing R(s,7)=1[/,s
+u(s,7)]+h(s,7). Here, u (s,7) are longitudinal fluctua-
tions, phonons, whereas h(s,r) are transversal (-h=0)
fluctuations, undulations, perpendicular to the classical
ground state. Equation (5) then yields

2
fdrfds au+l ah)2
(azh a,_h
+%(87u)2—f85u +- ], 6)

with B=Y/l1,=413V""(13). The ellipses in Eq. (6) indi-
cate various terms irrelevant for the long length-scale
properties of the straight ground state. By ignoring the
anharmonic terms d,u (3,h)? and [(3,h)?]%, Eq. (6) be-
comes easily tractable. This harmonic approximation to
(6) yields the standard Hookean strain response
{d,u)~f. Less trivial prediction of the harmonic ap-
proximation is a rough character of the quantum ground

state: For f =0, the transverse chain fluctuations
behave, in the ground state, as
([h(s;)— (sz)]2)1/2~ls1—s2|1/2,

indicating that the fluctuating chain, although asymptoti-
cally stralght is actually very rough, with its transverse
size growing as {(h)?*)!2~V'N.

The anharmonic terms of Eq. (6), d,u(d,h)?> and
[(3,h)?]% produce some even more striking effects on the
ground state. By treating them with a brute force pertur-
bation theory, one can show that they produce fluctua-
tion corrections to the renormalized elastic constant B
which, for zero tensile force f, diverge with size of the

chain, N (see the Appendix). As discussed in the follow-
ing (and, in a different way, also in the Appendix), a
consequence of this divergent behavior is a nontrivial
softening of the renormalized (size-dependent) elastic con-
stant B, i.e., Young modulus Y. This elastic constant
softens with increasing chain size N according to

Y .o(N)

B,e,,(N)=——'e—;‘(—)——~% . @)
Similar phenomena are known to occur in crystalline
membranes, due to thermal fluctuations. The present
quantum polymer problem in Eq. (6) is somewhat similar
to that of membranes with zero shear modulus [13].
(Still, these two problems are qualitatively different in de-
tail [14].) As in the membrane problem, in the present
quantum chain ground-state problem, anharmonic effects
can be handled essentially exactly (up to irrelevant terms)
as detailed here. As the first step, note that Eq. (6) is har-
monic in phonon, u variables. Thus, the phonons can be
decoupled from undulations by the change of variables:
(h,u)—(h,u’), with

u (s,7)=u’(s,7)+*;;s
+fd71de1G(S —SJ’T_TI)uO(SI)TI) N (Sa)
where u, is a quadratic local functional of h defined by
___1 2
o, u, T (o,h)”, (8b)
and

=[ ———5—9—— Batior (for T=0).  (8¢)
¢ Bg?+mow?

Note that this change of variables, from (h,u) to (h,u’),
is a simple shift (its Jacobian is unity). With this change,
H . transforms into

Hyg=H(u')+Hy(h)+H,(h),

where
Hw)=1 farfas | @ur+L@u2|, ©a
7 2" 2 ’
1 m K
Ho(h)= [dr [ds | 2230+ (82n)
f 2
METACEY (9b)
and
=1 1_mBo’q® 2 -
H=—[ V2 BeP tma? ~lug(q,@)? (for T=0) .
(9¢)

Here, uy(q,) is the Fourier transform of the field u (s, 7)
defined in Eq. (8b). Thus, H,(h) is a quartic interaction
of the undulations h. This interaction produces no non-
trivial long length-scale renormalization of the elastic
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constants in (9b); see the Appendix. Thus, Hy(h) in (9b)
describes qualitatively correctly the behavior of chain un-
dulations at long length scales. In particular, this implies
that the above harmonic result for the transverse correla-
tions is not altered by the anharmonic effects. Nonethe-
less, the anharmonic effects seemingly “eliminated” by
the change of variables in Eq. (8), do have a nontrivial
effect on the elastic response to f. To see this, note that,
by (8),

_S_ L 2
(3u) 3 2l()((ash)). (10)

Then, by calculating the average in Eq. (10) with respect
to Hy(h), Eq. (9b),

— #ig?
((ash)z)—(d—l)fwfq Py

(for T=0), (11)

one obtains
(asu)=—cl+%+c2\/f (12)

for a weak f acting on the ground state of a very long
chain (T=0, N=w). Here, ¢;=(d —1)%/4l,(mk)'"?,
and ¢, =c, /m(lyk)!"%. So, a weak f induces the strain
e (Bsu ) p—(3;u) ;g
Iy

behaving as

_f ¢
e=y + s V. (13)
The first term in (13) is the ordinary Hookean response.
The second term arises due to a suppressive effect of the
tensional force on chain undulations [see Eq. (9b)] yield-
ing a singular contribution to the average ((3,h)*) in
(10) of the form —V f. For a sufficiently weak f, the V' f
term in (13) dominates. Equation (13) can be rewritten as

1/2
_ fe ,
e=y 1+ I , (137
where f; is a Ginzburg force scale
—1)2 52y2
fe= (d—1) # Y2 _ (13")

16721 mx

For f << f; one has an anomalous elastic response of the
form e ~V f rather than the Hookean one, e ~ f. Thus,
the linear Hooke law, normally expected to be valid for a
weak f, breaks down. Physically, the “e ~V f” law
reflects an elastic response to f which is much stronger
than the standard, Hookean one arising from stretching
of bonds between monomers [the first term in (13)]. In
fact, the dominant effect of a weak f is not bond stretch-
ing, but a suppression of chain undulations that produces
a straightening of the chain. Because of the soft nature of
undulations, this straightening produces a contribution to
the strain growing much faster with f than in the Hooke
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law.

Related to this anomalous elastic response is the
softening of the renormalized Young modulus anticipated
in Eq. (7). To see this, consider the renormalized Young
modulus defined by

1 de .. 1 9(d,u)
Yo () hmf_)o af —hmf__o Iy af s (14)
or, by (10),
1 1 1 3{(d,h)?)
Y)Y 213 0T oy a3

As e~ f1/2 for infinite chains (N = ), one has, by (14),
Y..n (N=00)=0. For a finite chain, N < «, we obtain
from (15) by using (11) with the lower momentum cutoff
gy=m/N,

1 _t_ 1td=1_ # (16)
Yren(N) Y an 87718 ml/2K3/2 )

Thus,
Yo (N)=——% Y (17)

1+(qg/qy) 1+N/Ng '

where N; and gq; are, respectively, the Ginzburg chain
size and the corresponding Ginzburg wave vector,

T d—1 Y#

= 18
96 Ng 8771(3, m /4372 (18)
or, by (13"),
2T
° Lo
Klo

For long chains with N >> N, by (17) one has the soften-
ing of the Young modulus we anticipated before in Eq.
(7). For these chains we find

e=—f—=—lj—i (19)

for f << fy, with

2 2

=f6 :

Ne
-6 ~F'

N

2m

N (20)

Sn=lIok

Thus, in a range of weak forces that vanishes as N — o,
the elastic response is linear, however, with a softened
Young modulus. On the other hand, for tensile forces in
the range fy<f <fs one has previously described
anomalous elastic response with e~ f 172 whereas for
f > fs the response is nonanomalous, e =f/Y. In the
Appendix, we present an alternative derivation of Egs.
(16) and (17) and of the anomalous elastic response dis-
cussed in this section.

Finally, let us discuss the chain’s longitudinal, phonon
fluctuations. Within harmonic approximation to Eq. (6)
one obtains

([u(s)—u(s")?)2~[In|s —s'|]1/2, 21
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as for any one-dimensional crystal in its quantum ground
state. However, anharmonic interactions between pho-
nons and undulations in Eq (6) substantially modify this
harmonic result for |s —s'| >>Ng. We find, by (8a)—(8c)
and (9b),

([u(s)—u(s)]H)V2~|s —s'|1/* 2)

for |s —s'| >>Ng.

IV. CRUMPLED GROUND STATE

Quantum undulations have a disordering effect on the
chain orientational order. For example, by (12), for

f=0,

(3,R)=1|I

—{(3,h)?)
Iy

:tlo[l—%(Kc/K)l/z] )

with k., =(d —1)*#*/4l{m. So, the chain projection onto
the direction of the orientational ordering 1 is shorter
than that in the absence of undulations. This suggests
that the straight ground state may become unstable for
chains with a small value of bending rigidity constant,
k<k.. In other words, chains with sufficiently small
bending rigidity may exhibit a crumpled ground state.

We proceed by discussing first non-self-avoiding flexi-
ble chains at T =0. Classically, these chains are straight
for any positive value of bending rigidity x. To examine
how this is altered by the presence of quantum fluctua-
tions, we solved our model (5) exactly in the large-d limit,
in a standard fashion [14]. For f =0, we find a zero-
temperature second order phase transition occurring for
k=K, =d*#*/4l§m. For k>k,, the ground state is
asymptotically straight with a nonzero (9,R)=1tly[1
-—(Kc/lc)‘/z]”2 vanishing, as (K~KC)1/2, at the critical
point. On the other side, for k <«,, we find an orienta-
tionally disordered ground state, {9,R) =0, which has a
highly crumpled appearance. For positional correlations,
#(s;—s,)={[R(s;)—R(s,)]*), we find

(s, —s,)~In|s; —s,]| . (23)

Thus, the chain’s external size (radius of gyration) grows
very slowly with N as Rg~[ln(N)]”2. Equation (23) is
valid beyond the large-d limit, as we verified by quantum
Monte Carlo simulations of non-self-avoiding chains in
d =2 and 3. Simulations were carried out, in a standard
way [15], by discretizing the imaginary time 7 in
N_.=(#/kgT)/A7 time intervals. This reduces our mi-
croscopic model (4) to a classical statistical-mechanics
problem of N _N interacting particles. For chains with a
small k, our simulations indicate a highly crumpled
ground state (see Fig. 1), with positional correlations as in
(23), for any d. Analytic explanation for this su-
peruniversality of (23) is that in the crumpled phase, at
long length scales, the effective renormalized Hamiltonian
has a form as in (5) with ¥—V_, =r(3,R)? with a posi-
tiver, i.e.,
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FIG. 1. Inset: Non-self-avoiding (self-intersecting) polymer
in its crumpled ground state. Positional correlation function
¢(s) vs logyy(s), for various temperatures (T, > T, > T3> T,).
As T decreases, all curves collapse to ¢(s) ~log;o(s).

fi/ky T
ren—*f dr [ "ds | 7@ R+
For T =0, this Hamiltonian yields positional correlations
as in (23) in any d [16]. In Fig. 1 we give our Monte Car-
lo results for positional correlations ¢(s; —s,), obtained
at various temperatures, illustrating quantum-to-classical
crossover. Both the simulations of the microscopic mod-
el (4) and analytic calculations done with (24) show that
the quantum form (23) is valid for |s; —s,| <N*~T"},
whereas for |s;—s,|>N* one has the classical random
walk behavior, ¢(s; —s,)~|s; —s,|. As in more familiar
situations with ordinary crystals [6], this quantum-to-
classical crossover produces heat capacity C vanishing as
T —0. By (24), one can show that C ~ T as T—0 and the
crumpled ground state is reached.

On the other hand, for chains with k> «,, the straight
ground state is reached as T—0. Then one has a
different heat capacity law of the form C~V'T as can be
obtained by a simple calculation with Eq. (9b) (with
f=0). At any finite T >0 and for any k>0 (bigger or
smaller than «_), a chain will have a crumpled shape pro-
vided its size N is bigger than persistence size N,(T) [17].
For k<« N,(T) has a finite zero-T limit, since the
crumpled ground state is reached then. For x>k, the
straight ground state is reached as T—0 and N (T)
diverges as T~ . For k>k,, the quantum-to- classwal
crossover size, N, (T) diverges as T2, For chains
with N <N, .(T), one has the quantum behavior found
before, with ((h)??)!/2~N12 (Sec. III), whereas for

AT)<N <N_,(T), one has a scaling behavior with
((h )12 N3/ ? induced by thermally excited undula-
tions.

Thus far, we considered non-self-avoiding chains. In-
clusion of self-avoiding interactions in the form of short-
range repulsion between all monomer pairs may, howev-
er, strongly affect the crumpled ground state (whereas it
should not have any qualitatively new effects on the
straight ground state). For example, in the case of crys-

r 2
2 (R | . (24)
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talline membranes, self-avoiding interactions are believed
to suppress the crumpled phase at any T [10]. On the
other hand, long self-avoiding polymers are well known
to be crumpled at any finite 7. Then, the interesting
question is whether self-avoiding polymers can remain
crumpled at T =0, i.e., in the ground state. In other
words, is the crumpled ground state we found before for
non-self-avoiding flexible chains suppressed by inclusion
of self-avoiding interactions? To investigate this, we
simulated chains with a hard-core repulsion with the
hard-core size chosen to ensure that chains do not self-
intersect. Figure 2(a) depicts the typical ground-state
configuration of a 2D chain with zero bare bending con-
stant k. In spite of this, the chain is apparently straight,
as confirmed also from the calculation of positional corre-
lations: ¢(s; —s,)~|s; —s,|?*, with v=0.96+0.3~1 for
d=2. For d=3, we find a similar situation with
v=0.85~1, within the size limits of our simulation [Fig.
2(b)]. Thus, most likely, non-self-intersecting chains in
d =2 and d =3 cannot have a crumpled ground state.
This suppression of the crumpled ground state is some-
what similar to the suppression of the crumpled phase in
self-avoiding crystalline membranes, where such a phase
might be, in principle, induced by thermal fluctuations
[10]. Since the ground-state problem of the quantum
chain is, in the path integral representation, similar to a
classical statistical physics of a membranelike object (Sec.
II), one may attempt to relate our results for the chain
ground state to previous results on membranes [10].
However, there is no direct relationship between these
two problems. In the case of chains, self-avoiding in-
teractions contribute to the action of the quantum-
statistical Feynman path integral the term of the form

Jdr [ds, [ ds,8%R(s,,7)—R(s5,7)) . (25)

Note that this self-avoiding interaction is local in one,
the 7 coordinate. On the other hand, the contribution of
self-avoiding interactions to the classical Hamiltonian of
a crystalline membrane described by molecular positions
R(7,s), is of the form

(a)

®

FIG. 2. Non-self-intersecting polymers with zero bare bend-
ing rigidity constant k=0 in d =2(a), and in d =3(b).
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Jdr [dr,[ds, [ds,84R(s;,7)—R(s,,7)) . (26)

This self-avoiding interaction is nonlocal in both the 7
and s coordinates. In other words, in the membrane case,
Eq. (26), a molecule interacts with any other molecule,
whereas in the quantum chain case, Eq. (25), molecules
interact only if they have the same value of the 7 coordi-
nate. Thus, there is a significant qualitative difference be-
tween these two problems. Self-avoiding interactions ap-
pear to be qualitatively much weaker (more local) in the
quantum chain case. Nonetheless, our numerical simula-
tions indicate that even with this qualitatively weaker
self-avoiding interaction, the crumpled chain ground
state appears to be suppressed. Note, however, that this
suppression appears to be quantitatively weak, as demon-
strated by the still fairly crumpled appearance of the 3D
chain in Fig. 2(b).

V. DISCUSSION

The discussions of Secs. IIT and IV suggest that for
practical purposes, the most interesting prediction of this
paper is the anomalous elastic response of long chains in
their straight ground state, of the form e~V f. In Sec.
III we found that such a response exists in chains whose
size N is bigger than the Ginzburg size N, Egs. (18) and
(18"), for forces smaller than the Ginzburg force f, Eq.
(13").

Here, we discuss the experimental observability of this
anomalous elastic behavior in systems of potential in-
terest for molecular nanotechnology. As a rather general
example, we will discuss the common hydrocarbon po-
lyethylene chain, (—CH,—),, [18]. In the absence of
quantum fluctuations, its ground state is the well known
zigzagged configuration in Fig. 3. Here [18],

re=1.52X10"""m 27
and
6,=109.47° , (28)

[cosfy=~ —+]. It is convenient to consider (CH,), groups
as unit elements (cells) of the chain, as indicated in Fig. 3.
Thus, the mass entering into the equations of Sec. III is

Z
H\ /H H\ /ﬂ H\ /H
C C C
C/ \\foc A’./O\C/ \C
H/ i H o H/ h i H
<—1g —>

y

FIG. 3. Geometry of the polyethylene chain (—CH,—),,.
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whereas the cell size is

. 6o
lo=2r0sm—2— . (30)

Now, N entering into the equations of Sec. III is the num-
ber of (CH,), groups, i.e., M =2N is the number of car-
bon atoms in the chain. In contrast to the model of Sec.
I11, the polyethylene ground state in Fig. 3 breaks the in-
variance for rotations in the y-z plane. In effect, the
bending energy term of Eq. (6), k(3*h)?, is here replaced
by

K, (32h, ) +k,(3%h,)*, 31)

with, in general, Ky#:Kz.

To proceed, we need to estimate the bare elastic con-
stants Y, «,,, and «, . This can be done by considering en-
ergy costs of small fluctuations around the regular
configuration in Fig. 3. To accomplish this, we used po-
tential energy estimates frequently used in nanotechnolo-

gy calculations [18]. We find [19]

_ 8k ptan(6,/2) ’ (32)
Iy

and

Ky —m (34)
Here [18],

kg=0.45x10"18 J (35)
and [19]

V=0.14x10"18 7, (36)

By (32)-(36),

=0.15 .

X l@

z

So, k, is an order of magnitude smaller than «,. Thus, we
can simplify our estimates by ignoring undulations along
the z direction (in this way we will slightly underestimate
the anharmonic effects of Sec. III). In effect, we can use
formulas of Sec. III with d —1=1 and k=« as in (34), m
as in (29), /I, as in (30), and Y as in (32). With these esti-
mates, we obtain, by Egs. (13"") and (18) [or (18],

fg=0.104X10"2 nN~1073 oN , (37)
whereas
Ng~105~10?%, (38)

corresponding to chains with M;=2N;~200 carbon
atoms. Thus, to clearly enough observe the anomalous
elastic response e ~V f, one needs polyethylene chains
with N > 10N, i.e., with at least 2000 carbon atoms.
Moreover, one has to apply tensile forces smaller than
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fG~10'3 nN. On the other hand, the typical scale of
the forces proposed to perform manipulations of atoms in
building molecular nanotechnology devices is of the order
f~1nN [20]. Typical forces that might be applied dur-
ing regular functioning of such devices could be smaller,
say, f ~1072—10""! nN. Thus, unless these devices are
to be used for performing accurate measurements, the
anomalous elastic response e ~V f may not be of practi-
cal concern. In order to observe this zero-T response,
one has to expel the thermal fluctuations by going to tem-
peratures smaller than a characteristic temperature scale
T that can be estimated from

where g; =m/Ng, and w(q) is the frequency of undula-
tions with wave vector g, w(q)=(xg*/m)'/2. With previ-
ous estimates, we obtain Tgy=35 mK. If, say,
T =1072T;=0.35 mK, then there exists one decade of
length scales (between N; and 10N;) needed for the
anomalous response e~V f to develop. Thus, to sum-
marize, to directly observe this zero-temperature anoma-
lous elastic response e ~V'f, (i) one needs a polyethylene
chain with at least 2000 carbon atoms (ten times bigger
than the Ginzburg size), (ii) one must apply tensile forces
f of the order 1072 nN, and (iii) one must go to tempera-
tures of the order T~ 10! mK. These force and temper-
ature scales are below those of practical interest for many
of the future nanotechnological devices.

The prospects for observing our zero-temperature
anharmonic effects, however in a weaker form, are much
better by studying the softening of the Young modulus in
polyethylene chains shorter than the Ginzburg size, i.e.,
with less than 200 carbon atoms. These chains behave
practically as if at zero temperature if their temperature
is ~T;~10 mK. Equation (17) predicts a size-
dependent softening of the Young modulus from its bare
value Y, for chains with few carbon atoms, down to
Y .n ==Y, for chains with about 200 carbon atoms. This
anharmomc effect of zero-temperature quantum fluctua-
tions of polymers is remarkably quantitatively strong.
For comparison, we note that in order to observe a simi-
lar 50% change of three-dimensional smectic-A4 elastic
constants due to anharmonic effects of long length-scale
thermal fluctuations [21], one needs astronomically large
samples with some 10%° smectic layers or so.
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APPENDIX

Here, we present an alternative discussion of the anom-
alous elastic response (Sec. III). We start by discussing
zero-temperature fluctuation corrections to coupling con-
stants of the elastic Hamiltonian in Eq. (6). To one-loop
order, for the fluctuation correction to the elastic con-
stant B we obtain, for zero tensile force,

U= DB [ [ SNV

8B =—
412 (ma)2+:cq
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This correction diverges with decreasing lower momen-
tum cutoff gy, i.e., increasing chain size N = /gy, as

8B~——~—N . (A2)

In a broader scope, one can consider the present poly-
mer problem as the D =1 case of D-dimensional crystal-
line membranes with zero shear modulus. Here, D is the
internal dimension of the membrane; D =2 for mem-
branes, D =1 for polymers. For the quantum ground
state of such a membrane with N2 molecules, one obtains

8B~———~—N*"P (A3)

for D less than a critical dimension D, =2 [22]. On the
other hand, for membranes with zero shear modulus,
there are no fluctuation corrections to the bending con-
stant « and the monomer mass m that diverge as N~ 2 as
in (A3) [23]. Thus, the elastic constant B, i.e., the Young
modulus Y =B /I, is the only coupling in (6) that under-
goes a substantial renormalization at long length scales.
To find the form of this renormalization, we apply a re-
normalization group (RG) transformation of the Wilson
type to Eq. (6). In a standard fashion, we coarsegrain
fluctuations within the shell A(b)=A(0)e ~®<|q| <A(0),
— o0 <w< + . To one-loop order, from (A1) we obtain,
for D =1,

dB

—E=*w(b)B(b) , (A4)
where w is a dimensionless coupling constant
w(b)=9=1 AB (b) (AS)

8% [k(b)1P*[m (b)]V2A(b)

By (A4) and (AS), and taking into account the absence of
a substantial renormalization of x and m [(dk/db)=0,
(dm /db)=0], we obtain, for D =1,

dw_  _ 2

b w—w*. (A6)
The RG equation (A6) has a stable anharmonic fixed
point with w*=1. Integration of (A6) yields

w(0)e?

b)= . A7
W (0 T w(0)e? (A7)
By (A4),
B(b)=B (O)exp [~ [ 'dbw (6" . (A8)

Eqs. (A8) and (A7) imply

B(0)
B(b)= , A9
1—w(0)+w(0)e® (A9)
or, in terms of the momentum cutoff A=e ~°A(0),
_ B
Bren ) = 00+ A0 (0)1/A (A10)
with
w(0)=4"1 #B (A11)

8713 K372m'2A(0)

By introducing the Ginzburg wave vector g; =7 /Ng, as

in Eq. (18), and noting that g5 =w (0)A(0),

_ B
1—w(0)+(gg/A) ~

With B, =Y.,/l;, and A=qy=7/N, Eq. (Al12) be-
comes identical to Eq. (17) of Sec. III. Thus, for A—0,

Yin(A)~A

B_..(A) (A12)

(A13)

for zero tensile force f =0. Let us rederive the anoma-
lous elastic response e~V f of Sec. IIl by means of
(A13). A nonzero f introduces an effective short wave
vector cutoff, A, to membrane undulations. For g <Ay,
the stress contribution to the undulation energy (f /I, )g?
[see Egs. (9b) and (11)], dominates the bending energy
contribution kg*. Thus, (f /I, )A} zKA}, i.e. [24],

Ap~Vf . (A14)
The elastic response can be calculated as
- f
e=———. (A15)
Yren ( A f )

By (A13) and (A15), e~ f /Ay, so that by (A14), e~V f,
in agreement with Sec. III.

The Young modulus scaling (A13), obtained in this Ap-
pendix from the perturbative one-loop RG, is actually ex-
act to all orders in perturbation theory, as suggested in
the approach pursued in Sec. III based upon a change of
variables decoupling phonons from undulations [see Egs.
(8) and (9)]. All the RG results presented in this Appen-
dix we obtained before in Sec. III from the harmonic un-
dulations Hamiltonian (9b). The anharmonic undulation
interaction in (9c¢) is actually irrelevant. By considering it
as a perturbation to (9b), one can show that this perturba-
tion expansion is finite in the infrared, i.e., it does not
contain divergent behavior like that in (A2) or (A3).
Thus, the harmonic undulation Hamiltonian (9b) cap-
tures the behavior of undulations at long length scales
correctly.
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